Heterogeneous Information Network Embedding based Personalized Query-Focused Astronomy Reference Paper Recommendation
نویسندگان
چکیده
منابع مشابه
Heterogeneous Information Network Embedding for Recommendation
Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in recommender systems, called HIN based recommendation. It is challenging to develop effective methods for HIN based recommendation in both extraction and exploitation of the information from HINs. Most of HIN based recommenda...
متن کاملHINE: Heterogeneous Information Network Embedding
Network embedding has shown its effectiveness in embedding homogeneous networks. Compared with homogeneous networks, heterogeneous information networks (HINs) contain semantic information from multi-typed entities and relations, and are shown to be a more effective model for real world data. The existing network embedding methods fail to explicitly capture the semantics in HINs. In this paper, ...
متن کاملQuery-URL Bipartite Based Approach to Personalized Query Recommendation
Query recommendation is considered an effective assistant in enhancing keyword based queries in search engines and Web search software. Conventional approach to query recommendation has been focused on query-term based analysis over the user access logs. In this paper, we argue that utilizing the connectivity of a query-URL bipartite graph to recommend relevant queries can significantly improve...
متن کاملAcademic Paper Recommendation Based on Heterogeneous Graph
Digital libraries suffer from the overload problem, which makes the researchers have to spend much time to find relevant papers. Fortunately, recommender system can help to find some relevant papers for researchers automatically according to their browsed papers. Previous paper recommendation methods are either citation-based or contentbased. In this paper, we propose a novel recommendation met...
متن کاملHeterogeneous Information Network Embedding for Meta Path based Proximity
A network embedding is a representation of a large graph in a lowdimensional space, where vertices are modeled as vectors. The objective of a good embedding is to preserve the proximity (i.e., similarity) between vertices in the original graph. This way, typical search and mining methods (e.g., similarity search, kNN retrieval, classification, clustering) can be applied in the embedded space wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2018
ISSN: 1875-6883
DOI: 10.2991/ijcis.11.1.44